首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3767篇
  免费   162篇
  国内免费   29篇
测绘学   128篇
大气科学   310篇
地球物理   798篇
地质学   1076篇
海洋学   363篇
天文学   926篇
综合类   3篇
自然地理   354篇
  2021年   42篇
  2020年   52篇
  2019年   69篇
  2018年   89篇
  2017年   64篇
  2016年   99篇
  2015年   88篇
  2014年   96篇
  2013年   213篇
  2012年   122篇
  2011年   173篇
  2010年   124篇
  2009年   211篇
  2008年   159篇
  2007年   164篇
  2006年   162篇
  2005年   145篇
  2004年   141篇
  2003年   126篇
  2002年   126篇
  2001年   103篇
  2000年   101篇
  1999年   91篇
  1998年   96篇
  1997年   52篇
  1996年   47篇
  1995年   49篇
  1994年   50篇
  1993年   41篇
  1992年   35篇
  1991年   39篇
  1990年   31篇
  1989年   37篇
  1988年   30篇
  1987年   43篇
  1986年   34篇
  1985年   51篇
  1984年   55篇
  1983年   51篇
  1982年   47篇
  1981年   50篇
  1980年   46篇
  1979年   34篇
  1978年   29篇
  1977年   37篇
  1976年   28篇
  1975年   35篇
  1974年   14篇
  1973年   20篇
  1972年   18篇
排序方式: 共有3958条查询结果,搜索用时 31 毫秒
101.
102.
This paper describes Skylab/ATM observations of the events associated with a disappearing filament near the center of the solar disk on January 18, 1974. As the filament disappeared, the nearby coronal plasma was heated to a temperature in excess of 6 × 106K. A change in the pattern of coronal emission occurred during the 11/3 hr period that the soft X-ray flux was increasing. This change seemed to consist of the formation and apparent expansion of a loop-like coronal structure which remained visible until its passage around the west limb several days later. The time history of the X-ray and microwave radio flux displayed the well-known gradual-rise-and-fall (GRF) signature, suggesting that this January 18 event may have properties characteristic of a wide class of X-ray and radio events.In pursuit of this idea, we examined other spatially-resolved Skylab/ATM observations of long-duration X-ray events to see what characteristics they may have in common. Nineteen similar long-lived SOLRAD X-ray events having either the GRF or post-burst radio classification occurred during the nine-month Skylab mission. Sixteen of these occurred during HAO/ATM coronagraph observations, and 7 of these 16 events occurred during observations with both the NRL/ATM slitless spectrograph and the MSFC-A/ATM X-ray telescope. The tabulation of these events suggests that all long-lived SOLRAD X-ray bursts involve transients in the outer corona and that at least two-thirds of the bursts involve either the eruption or major activation of a prominence. Also, these observations indicate that long-lived SOLARD events are characterized by the appearance of new loops of emission in the lower corona during the declining phase of the X-ray emission. However, sometimes these loops disappear after the X-ray event (like the post-flare loops associated with a sporadic coronal condensation), and sometimes the loops remain indefinitely (like the emission from a permanent coronal condensation).Visiting Scientist, Kitt Peak National Observatory, Tucson, Ariz. 85726, U.S.A. operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.Presently located at NASA/MSFC, Space Sciences Laboratory, Marshall Space Flight Center, Ala. 35812, U. S.A.  相似文献   
103.
The leaching of coal and coal/asphaltite/wood-ashes in sulfuric acid (pH 1.0, 25 °C, S/L, 1:10) was studied as a function of time; acid consumption and extracted metal concentrations are presented. Whole coals consumed acid rapidly during the first few minutes, followed by slow acid consumption. Wood-, lignite-, and asphaltite-ashes consumed acid in two stages, the rapid phase extending < 30 min and the slow phase extended up to 10 days. The rapid phase was dominated by the dissolution of Ca, K and Mg ions for wood-ash, by Ca, Al and Mg ions for lignite-ash and Ca and Mg ions for asphaltite-ash. The sulfur concentration in solution and the concentrations of Ca, Fe, K, Mg, Na, P, Al and Mn in the aqueous phase verified the neutralizing capacity of the untreated ashes as well as the formation of insoluble sulfates in the residues. The slow phase kinetics differed for different fuels and exhibited leaching of several abundant elements—Fe, Al, K, Na and Mn. Trace elements (Ba, Cd, Co, Cr, Cu, Mo, Ni, Pb, Th, U, V, Zn) sometimes required up to 32 h for maximal extraction from ashes. Suggestions are presented regarding the chemical nature of trace elements in the untreated coals and ashes and suitable residence times for economical industrial processes. We think it possible to combine bacteriological oxidation of sulfidic concentrates of acid leaching from ash of various qualities or even whole coals.  相似文献   
104.
We present evidence for a decrease in the magnitude of Tharsis-circumferential compressive stress during the Late Hesperian to the Middle Amazonian based on chronologic changes in the predominant style of faulting in southern Amazonis Planitia. Using high-resolution MOLA topography, we identify a population of strike-slip faults that exhibit Middle Amazonian-aged displacements of regional chrono-stratigraphic units. These strike-slip faults are adjacent to an older population of previously documented Late Hesperian-aged thrust faults (wrinkle ridges). Along-strike orientations of these thrust and strike-slip faults reveal the Tharsis-radial stress to be the area's most compressive remote principal stress and that this stress orientation and magnitude persisted throughout the Late Hesperian to the Middle Amazonian. We show that the change in the predominant style of faulting from thrust faulting to strike-slip faulting during this time requires a decrease of the Tharsis-circumferential compressive stress to a magnitude less than lithostatic load, with negligible change in stress orientation.  相似文献   
105.
Displacement-length (D/L)scaling relations for normal and thrust faults from Mars, and thrust faults from Mercury, for which sufficiently accurate measurements are available, are consistently smaller than terrestrial D/L ratios by a factor of about 5, regardless of fault type (i.e. normal or thrust). We demonstrate that D/L ratios for faults scale, to first order, with planetary gravity. In particular, confining pressure modulates: (1) the magnitude of shear driving stress on the fault; (2) the shear yield strength of near-tip rock; and (3) the Young's (or shear) modulus of crustal rock. In general, all three factors decrease with gravity for the same rock type and pore-pressure state (e.g. wet conditions). Faults on planets with lower surface gravities, such as Mars and Mercury, demonstrate systematically smaller D/L ratios than faults on larger planets, such as Earth. Smaller D/L ratios of faults on Venus and the Moon are predicted by this approach, and we infer still smaller values of D/L ratio for faults on icy satellites in the outer solar system. Collection of additional displacement-length and down-dip height data from terrestrial normal, strike-slip, and thrust faults, located within fold-and-thrust belts, plate margins, and continental interiors, is required to evaluate the influence of fault shape and progressive deformation on the scaling relations for faults from Earth and elsewhere.  相似文献   
106.
Ingestion of enhanced zinc can cause memory impairments and copper deficiencies. This study examined the effect of zinc supplementation, with and without copper, on two types of memory. Rats raised pre- and post-natally on 10 mg/kg ZnCO3 or ZnSO4 in the drinking water were tested in a fear-conditioning experiment at 11 months of age. Both zinc groups showed a maladaptive retention of fearful memories compared to controls raised on tap water. Rats raised on 10 mg/kg ZnCO3, 10 mg/kg ZnCO3 + 0.25 mg/kg CuCl2, or tap water, were tested for spatial memory ability at 3 months of age. Significant improvements in performance were found in the ZnCO3 + CuCl2 group compared to the ZnCO3 group, suggesting that some of the cognitive deficits associated with zinc supplementation may be remediated by addition of copper.  相似文献   
107.
Coastal ecosystems are ecologically and commercially valuable, productive habitats that are experiencing escalating compromises of their structural and functional integrity. The Clean Water Act (USC 1972) requires identification of impaired water bodies and determination of the causes of impairment. Classification simplifies these determinations, because estuaries within a class are more likely to respond similarly to particular stressors. We reviewed existing classification systems for their applicability to grouping coastal marine and Great Lakes water bodies based on their responses to aquatic stressors, including nutrients, toxic substances, suspended sediments, habitat alteration, and combinations of stressors. Classification research historically addressed terrestrial and freshwater habitats rather than coastal habitats. Few efforts focused on stressor response, although many well-researched classification frameworks provide information pertinent to stressor response. Early coastal classifications relied on physical and hydrological properties, including geomorphology, general circulation patterns, and salinity. More recent classifications sort ecosystems into a few broad types and may integrate physical and biological factors. Among current efforts are those designed for conservation of sensitive habitats based on ecological processes that support patterns of biological diversity. Physical factors, including freshwater inflow, residence time, and flushing rates, affect sensitivity to stressors. Biological factors, such as primary production, grazing rates, and mineral cycling, also need to be considered in classification. We evaluate each existing classification system with respect to objectives, defining factors, extent of spatial and temporal applicability, existing sources of data, and relevance to aquatic stressors. We also consider classification methods in a generic sense and discuss their strengths and weaknesses for our purposes. Although few existing classifications are based on responses to stressors, may well-researched paradigms provide important information for improving our capabilities for classification, as an investigative and predictive management tool.  相似文献   
108.
Summary The stoichiometry of pyroxenes {viiiX2+ viY2+ ivZ4+ 2 O6} and garnets {xiiX2+ 3 viY3+ 2 ivZ4+ 3 O12} is re-evaluated by a theoretical crystal-chemical approach that takes into account natural phenomena that do not fit with conventional anhydrous stoichiometric mineralogy: the existence in eclogites of microinclusions of other minerals that may have been exsolved from previous supersilicic or subsilicic UHPM pyroxene or garnet. Different definitions of supersilicic and subsilicic are discussed and the one based on the ability to exsolve SiO2 and leave behind a stoichiometric pyroxene or garnet is recommended for general adoption. The SHAND system (S = Si et al.; H = H; A = Al et al.; N = Na et al.; D = divalents) for projecting multivariate chemical space involving 23 cations and 104 selected natural or potential mineral species on to two essential diagrams (SAND and SHND) is described in full for the first time. Numerous possible chemical exchanges are considered and justified with respect to known mineral phenomena such as cation vacancies, octahedral silicon or protonation. Several new potential end-members are presented, in particular “supersilipyx”, “supersiligar” and “subsiligar”. It is suggested that small quantities of these end-members can be incorporated into UHPM solid-solutions and lead to various exsolution phenomena during eclogite exhumation.  相似文献   
109.
Syn-magmatic removal of the cumulate pile during the formation of the Bushveld Complex resulted in “potholes”. Erosion progressed downward in the cumulate pile, resulting in a series of steep, transgressive contacts between locally conformable potholed reefs in the regional pothole sub-facies of the Swartklip Facies in the western limb of the Bushveld Complex. The deepest of these potholes, “third-order” or “FWP2” potholing, occurs where the base of the Merensky Cyclic Unit transgresses the Upper Pseudo-Reef Chromitite marker horizon. The base of a FWP2 pothole on Northam Platinum Mine consists of an unconformable stringer Merensky Chromitite overlain by a medium-grained, poikilitic orthopyroxenite and underlain by either a pegmatitic harzburgite or the medium-grained Lower Pseudo-Reef Anorthosite. Detailed shape and distribution analysis of FWP2 potholes reveals underlying patterns in their shape and distribution which, in turn, suggest a structural control. The ratio between pothole short vs long axes is 0.624 (N=1,385), although the ratio increases from 0.48 to 0.61 in the long axis range 10 to 60 m, then decreases from 0.61 to 0.57 from 61 to 100 m, increasing again from 0.57 to 0.61 from 101 to 400 m, suggesting that there is not a simple relationship between pothole shape and size. Shape (circularity, eccentricity, and dendricity) analysis of a subset of 638 potholes indicates that potholes with long axes <100 m have an elliptical, average normalized shape, elongate on a 120–150° orientation. Potholes with long axis lengths >100 m have an average normalized shape that is bilobate and elongate on a 120° orientation. The average aspect ratio (short axis length divided by long axis length) of potholes is highest for potholes with long axis lengths >100 m and lowest for potholes with long axis lengths between 35 and 60 m. The most common long axis orientation for potholes with long axis lengths <100 m is 150° but 120° for long axis lengths >100 m. Fractal analysis indicates that the distribution of pothole centers is controlled neither by a single nor several interacting fractal dimensions. Autocorrelation (Fry) analysis of the distribution of pothole centers shows recurring pothole distribution trends at 038, 070, and 110° for potholes over the full range of long axis lengths, while the trends of 008 and 152° occur in potholes with long axes lengths between 60 and 100 m. Chi-squared (X 2) analysis of the locations of pothole centers suggests that the distribution of small potholes is highly non-uniform but becomes exponentially more uniform with increasing pothole size. The model which best fits the observed shape and distribution analysis is a combination of protracted independent growth and “nearest neighbor” merging along specific orientations. For instance, the clustered distribution of original pothole centers resulted in merged potholes with long axes lengths of up to 60 m, exhibiting short vs long axes ratios of 0.61, preferred orientations of 150°, and alignment along 010 and 150° trends. Further independent growth allowed for merging of similar-sized (and smaller) neighboring potholes, generating potholes with long axes of up to 100 m in length, a preferred long axis orientation of 150°, and alignment along 010, 040, 075, and 150°. Subsequent preferential merging occurred along a 120° trend, thereby preserving a bilobate form. This implies that while pothole initiation and enlargement may be driven by a “top-down” (i.e., possibly thermomechanical) process, an underlying linear or structural catalyst/control is revealed in changes in pothole shape during enlargement and, furthermore, in the preferred trends along which potholes merged over a considerable period, possibly concomitant with adjustment of major structures in the footwall to the Bushveld Complex and pulses into the magma chamber.  相似文献   
110.
Thermal expansion differences between minerals within rocks under insolation have previously been assumed to drive breakdown by means of granular disaggregation. However, there have been no definitive demonstrations of the efficacy of this weathering mechanism. Different surface temperatures between minerals should magnify thermal expansion differences, and thus subject adjacent minerals to repeated stresses that might cause breakdown through fatigue failure. This work confirms the existence of surface temperature differences between minerals in granitic rocks under simulated short-term temperature fluctuations so as to discriminate their potential for initiating granular disaggregation. The influence of colour, as a surrogate for albedo, and crystal size, as a function of thermal mass are specifically identified because of their ease of quantification. Four rock types with a range of these properties were examined, and subjected to repeated short-term temperature cycles by radiative heating and cooling under laboratory conditions. Results show that while albedo is the main control for overall and individual maximum temperatures, crystal size is the main factor controlling higher temperature differences between minerals. Thus, stones with large differences of mineral sizes can undergo magnified stresses due to thermal expansion differences.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号